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Abstract 

A new real-space method of calculating the dispersion 
surface and Bloch waves in cross-grating HEED is 
derived. Instead of using a large many-beam matrix to 
compute the dispersion surface, the equivalent two- 
dimensional band structure of allowed transverse 
energies of the Bloch waves is calculated from a small 
matrix obtained by approximating the KKR equations 
derived earlier [Ozorio de Almeida (1975). Acta Cryst. 
A31, 435-442]. For a close-packed array of atomic 
strings as in Au [111], transverse energy bands in 
excellent agreement with conventional 91 x 91 many- 
beam matrix calculations are obtained with only a 7 x 
7 matrix. It is also shown how the calculation of the 
Bloch waves and their Fourier coefficients C~)may be 
further simplified by replacing the unit cell of the 
projected potential by its Wigner-Seitz circle. 
Numerical calculations, again for Au[ 111], show that 
the Ct0 J~ so obtained are still in excellent agreement with 
many-beam calculations but that the higher Fourier 
coefficients C~ ), being more sensitive to the form of the 
Bloch waves in the interstitial region, are less accurate. 
The form of the Bloch waves is investigated and it is 
shown that near the zone-axis critical voltage, the 
nearly degenerate Bloch waves are almost entirely sp 
hybrids so that a 3 x 3 matrix may be used. 

Introduction 

There have been several attempts to extract quanti- 
tative information from electron-diffraction zone-axis 
patterns and channelling patterns (Fujimoto, Takagi, 
Komaki, Koike & Uchida, 1972; Kambe, Lehmpfuhl 
& Fujimoto, 1974; Steeds, Jones, Rackham & Shan- 
non, 1976; Shannon & Steeds, 1977). Although useful 
information about the strength of the string potential 
has been obtained (Steeds, Jones, Loveluck & Cooke, 
1977; Fujimoto, Uchida & Lehmpfuhl, 1976), progress 
has been hampered by the difficulty of performing the 
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dynamical-diffraction calculations required. In par- 
ticular, if the dispersion surface and Bloch functions are 
calculated from the many-beam equations (Hirsch, 
Howie, Nicholson, Pashley & Whelan, 1965), large 
matrices (at least of order 60 x 60 even for simple 
atomic-string potentials) have to be diagonalized to 
obtain accurate results and the way the observed 
diffraction depends on the atomic string potentials is 
obscured. Large matrices are required in these cross- 
grating orientations with the incident electron beam 
nearly parallel to a low-index zone axis of the crystal 
because there are many reciprocal-lattice points in the 
zero Laue zone which are near the Ewald sphere. The 
Bloch waves excited in the crystal are therefore made 
up of many plane-wave components and, to a first 
approximation, we may regard the electrons as scat- 
tered by a two-dimensional projection of the crystal 
potential (Howie, 1966; Berry, 1971; Buxton, 1976). 

Alternatively, we may regard the poor convergence 
of the many-beam equations as due to the presence of 
tightly bound Bloch waves sharply peaked on the 
atomic strings (Kambe, 1978). In fact, it has proved 
fruitful to describe these bound Bloch waves with 
negative transverse energy [the zero of transverse 
energy is taken as the maximum of the projected 
crystal potential as in Berry (1971) and Ozorio de 
Almeida (1975a)] in terms of localized atomic-string 
orbitals (Kambe, Lehmpfuhl & Fujimoto, 1974; 
Buxton, Loveluck & Steeds, 1978a,b; Uchida, Fu- 
jimoto, Katerbau & Wilkens, 1978; Fujimoto, 1978). 
However, the bound Bloch waves are strongly ab- 
sorbed (Hirsch et al., 1965; Ozorio de Almeida, 1975a,b) 
and contribute little to the observed diffraction from 
thick crystals which is dominated by the anomalously 
transmitted Bloch waves with small transverse energies 
(Steeds, Jones, Loveluck & Cooke, 1977; Fujimoto, 
Sumida & Fujita, 1977). Moreover, Steeds, Jones, 
Loveluck & Cooke (1977) show that it is the same 
Bloch waves with small transverse energies near the 
maxima of the projected potential which are involved in 
the zone-axis critical-voltage effect - a dynamical 
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diffraction effect used by these authors to infer the 
strength of the atomic-string potential. A simple theory 
capable of describing these Bloch waves with small 
transverse energies is therefore needed. 

Kambe & Lehmpfuhl (1974) and Kambe (1978) 
have attempted a hybrid description using orthog- 
onalized plane waves (OPWs), but this suffers from 
the disadvantage that the localized atomic-string 
orbitals are not known a priori unlike the core states in 
conventional band theory (see Ziman, 1971). In this 
paper, however, the K K R  method proposed by Ozorio 
de Almeida (1975a) will be utilized. Unlike the above 
OPW and APW (augmented plane wave) methods also 
proposed by Ozorio de Almeida (1975a) which both 
use an overcomplete set of basis functions, the KKR 
method has the advantage of being fully analytic as 
pointed out by Ozorio de Almeida (1975a). Ftirther- 
more, by using an analogue of Andersen's (1975) 
atomic-sphere approximation (sometimes called the 
muffin-tin orbital method), developed recently in 
conventional band theory, in {}2 we obtain an 
approximation (hereafter called the atomic-string 
approximation or ASA for short) which enables us to 
simplify the KKR scheme yet calculate accurately the 
small transverse energies of the important Bloch waves. 
Remarkably accurate results are also obtained for the 
transverse energies of the tightly bound Bloch waves 
even though the ASA is essentially a small transverse 
energy approximation. 

In {} 3, this ASA is discussed in detail for a 
close-packed array of atomic-string potentials and 
numerical results given for [111] zone axes of Au and 
Mo. In the ASA, the projected potential is replaced by 
a muffin-tin potential as described by Ozorio de 
Almeida (1975a) in his derivation of the KKR. For a 
close-packed array of atomic strings as in Au [ 111 ] and 
Mo [111], it is obviously a good approximation to 
replace the projected potential U(R) by a muffin-tin 
potential which is cylindrically symmetric within 
muffin-tin cylinders of radius R M about the centre of 
each atomic string and constant in the inter- 
stitial regions as found by Jones (1976) in his APW 
calculations. However, for the more open arrange- 
ments of atomic strings often encountered when there 
are two or more strings of atoms in each unit cell of the 
projected potential, as in the [0001] zone axis of 2H 1 
MoS2 or S i ( l l 0 ) ,  the muffin-tin approximation can 
lead to serious errors (Jones, 1976). In the ASA we 
also ignore the detailed geometry of the unit cell of the 
projected potential when calculating the Bloch waves 
themselves. Nevertheless, as shown in {} 4, the ASA still 
enables us to calculate the Bloch waves fairly accu- 
rately, particularly as far as cylindrical averages of 
them are concerned. Thus, for example, the Fourier 
coefficients C(0 ~ are found to be in excellent agreement 
with conventional many-beam calculations. Further- 
more, with small matrices, often only 3 x 3, we obtain 

formulae sufficiently simple to enable us to investigate 
the zone-axis critical-voltage effect analytically in a 
following paper. 

2. Derivation of the ASA from the KKR 

2.1 The muffin-tin potential and the KKR 

As described in several papers (Berry, 1971; Ozorio 
de Almeida 1975a; Buxton, 1976), in the projection 
approximation we expand the electron wavefunction in 
the crystalline specimen in terms of the two-dimension- 
al Bloch waves rj(R) which have transverse energies sj. 
Thus, 

~,(r)=exp(i zz) Y ej r j ( R ) e x p ( - i  sjz/2z),  (2.1) 
J 

where it is assumed that the zone axis is parallel to the z 
axis, that R is the component of r perpendicular to z 
and that the entrance surface of the crystal is the plane 
z = 0 on which (2.1) is matched to an incident plane 
wave e ix-'. If K is the component of the incident 
wavevector g perpendicular to z, the excitation ampli- 
tudes ej are given by the initial condition 

eiKu= Z ej rj(R) (2.2) 
) 

since the expansion (2.1) neglects back-scattered waves 
(Buxton, 1976). 

The Bloch waves rj(R) are eigenfunctions of the 
two-dimensional Schr6dinger equation 

[--V2R + U(R)I r j (R)= sj(K) rj(R), (2.3) 

with the Bloch boundary condition 

z'j(R + L) = d KL rj(R), (2.4) 

in which L is a lattice vector of the projected potential 
U(R). Our central problem is to calculate these 
two-dimensional Bloch functions rj(R) and the two- 
dimensional band structure sj(K) from which the 
dispersion surface of allowed wavevectors X - sj(K)/2Z 
is easily obtained as explained by Ozorio de Almeida 
(1975a) and Buxton (1976). 

In the many-beam theory the projected potential is 
written in terms of its Fourier coefficients 

U ( R ) =  y, UGd °'a, (2.5) 
G 

where the summation is over reciprocal-lattice vectors 
G perpendicular to the zone axis z. The Bloch waves 
are similarly expanded: 

rj(R) = y, Ctd ~ e i(K ÷ G).R. (2.6) 
G 
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Substitution of these expansions in (2.3) yields the the coefficients al j) being obtained from the eigenvectors 
familiar many-beam equations: of the K K R  equations (Ozorio de Almeida, 1975a) 

(J) Z {[sj(K) -- (K + G)21JGG'-- UG-G'}CG, (K) = 0, 
G' 

(2.7) 

from which the transverse energy band structure, sj(K), 
and the Fourier coefficients of the Bloch waves, C~ ), 
may be obtained by matrix diagonalization. Since in 
this paper we shall not attempt to calculate diffracted 
wave intensities or fine details of the behaviour of the 
Bloch waves, absorption effects will be neglected. The 
potential, U(R), and the transverse energies, sj(K), are 
therefore real. In any case, absorption effects can often 
be included afterwards by non-degenerate perturbation 
theory without affecting the Bloch waves or the real 
part of the transverse energy although a more careful 
calculation is necessary near the zone-axis critical 
voltage (David, Gevers & Serneels, 1976; Buxton & 
Loveluck, 1977). 

In the K K R  method, we exploit the approximate 
cylindrical symmetry of the projected potential within 
each atomic string and replace /)'(R) by a muffin-tin 
potential UMr(R) obtained by taking an angular 
average about the centre of each atomic string which is 
assumed to be at R = 0. Thus, 

UMr(R) = Z UGJo(GR) for R < R M, (2.8) 
G 

where R M is the muffin-tin radius. Since the average 
interstitial potential is chosen to be zero, the average 
potential U 0 is given by 

2zCR2M ~ JI(GRM) 
UG (2.9) 

U° = S o - rcR2M o GR M ' 

in which So is the area of a unit cell of the projected 
potential and S o - zrR]t is the interstitial area. If, as 
assumed here, there is only one atomic string in each 
unit cell of the projected potential, the best approxi- 
mation with the smallest interstitial area is obtained by 
allowing the muffin-tin cylinders to touch, so that R M is 
half the string spacing. 

Inside each muffin-tin cylinder, we now expand the 
Bloch functions rj(R) in a partial wave series using the 
cylindrical harmonics d t° and the regular solutions 
rt(R) of the radial Schr6dinger equation (Berry & 
Ozorio de Almeida, 1973): 

1 d drt 
- -  R + [UMr(R ) + IVR 2] rt = x2 rl ' (2.10) 

R dR dR 

in which x2 is equal to s the transverse energy. Thus, 
for R < R M, 

oo 

r j ( R ) =  ~. alJ)e u° r/(R), (2.11) 
l=--oO 

y[ (co t  r h - / )  Ju, + ff~l,] sin(r//,) a t, = 0. (2.12) 
l '  

These equations also determine the transverse energy, 
s, since there are only non-trivial eigenvectors at 
particular energies, sj, when the waves scattered by all 
the atomic strings interfere constructively to form 
Bloch functions. 

In (2.12), the scattering properties of the individual 
muffin-tin potentials enter through the phase shifts r/t 
which may be obtained from numerical solutions of the 
Schr6dinger equation (2.10) via the log derivatives 

Ot(s ) = [Rr~(R)/rt(R)IR=R~,, (2.13) 

since 

cot r/t(s) = (R M Y~ - O t Yt)/(RMJ~ - DtJt).  (2.14) 

Here, all the Bessel functions are evaluated at xR M and 
the ' denotes differentiation with respect to R. 

The structure constants, ~/,(s,K), however, only 
depend on the geometrical arrangement of the atomic 
strings (Ozorio de Almeida, 1975a). Since we are 
seeking stationary-state eigenfunctions rj(R), the ff~t, 
must be obtained from the principal value Green's 
function so, for negative s, 

~"~t, = - i  ~ e iK.L H}~t ' (~L) eUOL, (2.15) 
LeO 

where x = i v / -  s. For positive s, the Hankel function 
HI~ t, must be replaced by i times a Neumann function 
Yt-t,  and the - i  after the cot r h in (2.12) omitted so 
that the K K R  matrix is always Hermitian when, as 
here, absorption is neglected. Although the lattice sum 
in (2.15) for s < 0 is rapidly convergent, when s is 
positive the corresponding series must be summed by 
an Ewald transformation (Ozorio de Almeida, 1975a). 

2.2 The atomic-string approximation 

The ASA is obtained from (2.12) in two steps. First, 
we let x --, 0 everywhere except in the log derivatives 
Dt(s ) where we retain the transverse energy, s, and then 
we replace the muffin-tin cylinder by the slightly larger 
Wigner-Seitz cylinder of radius R s chosen such that 
7~Rs 2 is equal to the area of a unit cell S 0. Physically, this 
is because we expect the transverse energy bands, 
sj(K), to be relatively insensitive to the value assigned 
to the flat interstitial potential, so for small s we may 
take the interstitial potential to be equal to the 
transverse energy which implies x = 0 in the interstitial 
region. We then replace R u by R~ to mimimize the 
interstitial area in which the Bloch waves have been 
approximated (Andersen, 1975). 
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Since (Abramowitz & Stegun, 1965), for positive n 
as x ~ O, 

and (2.16) 

2i 
H~o')( x) "" iYo( x) ~- ' 7  In(x), 

the same limiting formulae are obtained in (2.12) when 
--, 0 along the positive real axis or the positive 

imaginary axis. Using (2.14), the fact that 

1 Ix/. J~(x) ~ for n _> O, (2.17) 

and the relation 

¢~_,,(x) = (--71)" ~ , , (x) ,  (2.18) 

which holds for all cylinder functions, we find for 
example that 

"~t , ~ -  Z e 'K'u[(l l -- l ' l - -1)  !~re] 
L * O  

x (2at_r/xL)~t-rEexp[--i(I-- l') 0L] (2.19) 

for l 4: l ' , where at_ t, is +_1 according as l ~ l'. 
Similarly, for 1 4: 0, 

{ 2 ~2,t, I11[(1ll--1)[ Ill + D t 
(2.20) 

cotrlt  \ KR M ] rc I I I - - D  t 
/ 

as x --, 0. Since, according to (2.16), ff~t only diverges 
as In(x), the phase-shift terms (2.20) are much larger 
than the diagonal structure constants ~ t .  However, the 
s wave phase shift 

- 2  2 
cot r/0 - - , -  + - [ln(KRM/2) + y] (2.21) 

zrD o ~z 

and only diverges as fast as the structure constant ff~0 
(y is Euler's constant equal to 0.5772). A careful 
calculation using 

eiK'L: --1 when K 4: G (2.22) 
L ~ 0  

then shows that the logarithmically divergent terms in 
cot r/o and ff~o cancel, and that 

-2 _2y 
- -  ~ - -  + e i K . L  ln(L/RM). 

cot r/o i + ~ o  z c D o  7r{'7'~0 

(2.23) 

Thus, as we let K -+ 0, the diagonal terms in the K K R  
matrix diverge as K -2tt~ and the off-diagonal terms as 

x--~z- t.,. Part  of this divergence is cancelled by the 
sin r h, terms in (2.12), for which as x --, 0 

sin r h, --, ~ I l '  I------~ vt'(RM) [11'1 -- Dr,] 

(2.24) 

but the remainder has to be removed by multiplying 
each equation in (2.12) by (a t KRM/2 ) z#(21/l!). If we 
then replace R M by the Wigner-Seitz radius R s, we 
obtain the ASA equations: 

~. {fl[Dt(s, Rs)] 6 w + Yu, (K)}  c v = O ,  (2.25) 
1' 

in which the log derivatives D t are now evaluated at Rs 
and appear only on the diagonal in the combinations: 

1 I/I + D  l 
for 14:0  

f t ( D l ) =  i 27/I I -~--D,  (2.26) 
! 
~ - I / D  o for l = 0. 

The new structure constants Y t t , (K)  are indepen- 
dent of the transverse energy and can be evaluated once 
and for all at the beginning of a calculation. Because 
the original K K R  structure constants ~'~t, only 
diverged as x -~t-  r~ and each off-diagonal term has 
effectively been multiplied by x jt~ + ~r, as we took the 
small x limit, the ASA structure constants, Y tv ,  vanish 
if l and l '  are non-zero and have the same sign. The 
remaining structure constants, however, cannot be 
computed from the series given in (2.19) and (2.23) 
because they do not converge very quickly. An Ewald 
transformation must therefore be used as described by 
Nijboer & de Wette (1957). Alternatively, we can take 
the small x limit of the formulae given by Ozorio de 
Almeida (1975a). Thus, for ll' < 0 and l 4: l ' , 

-(-1) 'r '[2_;oi, t ,+,r,  
Y t t ' ( K ) -  Ill.ill'l! 

e-(K + G)  2 X 
e - i ( l - l ' ) O x + o  X 

x (RslK + GI/2) l / - r t  + ½ Z e~KLe-t<~-r)oL 
L * 0  

"1 

× ( R , L / 4 X ) l t - r % t - r , -  l (L2/4X) [ 

and (2.27) 

- 2 n  ~ e -(K + G),x -½ eiK'LE1 
Yoo (K) - So "if" - ~  + --G)2 Z ( L 2 / a x )  

L ~ 0  

+ ½re- In(4X/R2)], (2.28) 

where the exponential integrals a ,  and E~ are defined as 
in Abramowitz & Stegun (1965). The Ewald parameter 
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X may conveniently be taken as So/4zc, which for a 
square or hexagonal lattice secures equally rapid 
convergence of the direct and reciprocal-lattice sums. 
Note that, apart from trivial factors and complex 
conjugation, the structure constants depend only on 
II-- PI. 

Finally, we note that on a transverse energy band, 
sj(K), when the secular determinant 

det/v Ifl[Dt(sj)] 311, + ,~ ' / / , (K)I  = 0, (2.29) 

the partial wave amplitudes, al j), in (2.11) may be 
obtained from the ASA eigenvectors, since 

c} j) -- r'(Rs~) [III - -  D l] a} J). (2.30) 
R, 

3. The ASA for hexagonal close-packed atomic strings 

Shannon  & Steeds (1977) have discussed the quali- 
tative features of high-symmetry zone-axis patterns 
obtained from several different arrangements of 
atomic-string potentials. The simplest is the hexagonal 
close-packed array obtained, for example, from a 
( 111 ) zone axis of a f.c.c, or b.c.c, metal which will be 
discussed here in detail. A similar analysis may be 
carried out for other simple (e.g. square or rectangular) 
arrays. The form of the dispersion surface is deter- 
mined by the behaviour of the structure constants 
Yn ,  (K) and the form of the log derivatives Dr(s). As in 
the KKR, the structure constants depend only on the 
geometrical arrangement of the atomic strings, whilst 
the log derivatives depend only on the form of the 
muffin-tin potential UMr( R ). 

3.1 The ASA structure constants Yu, (K)  

To obtain a good impression of the form of the 
dispersion surface for the 6mm zone axes of interest 
here, we may plot the transverse energy bands, sj(K), 
along the symmetry lines in the two-dimensional 
Brillouin zone as indicated in Shannon & Steeds (1977) 
and in Fig. 1. Computed values of the non-zero ss, sp 
and pp structure constants obtained from (2.27) and 
(2.28) along Z and T are shown in Fig. 2. Since the 
ASA structure constants are independent of the size of 
the hexagonal lattice {L}, for convenience a [111] zone 
axis of a f.c.c, crystal with its lattice parameter set 
equal to unity has been assumed. Usually, with the 
Ewald parameter X chosen as described in § 2, only 
three or four stars of vectors were required in each sum 
to obtain the structure constants to an accuracy of 
10-5. 

In Fig. 2, the structure constants have been 
multiplied by K 2 -~t~- ~1,~ to cancel the divergence of the 
G = 0 term at the i" point and also by factors of i and 
e,U- t,)0~ to obtain a real positive result. Also shown in 

~ k(~)  

~(1 i0) 

Fig. 1. Symmetry lines in the two-dimensional Brillouin zone for a 
6ram zone axis. The Miller indices correspond to a [1111 zone 
axis of a f.c.c, crystal. 
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Fig. 2. ASA structure constants as functions ofK 2 along ,~ and ~r. 
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Fig. 2 as a dashed line is an analytic approximation 
obtained by expanding (2.27) about K = 0 and using 
symmetry and the Poisson summation formula 
(Lighthill, 1958) to eliminate the sums for the sp and pp 
structure constants. In detail, for our hexagonal array 
we find: 

Yoo ~- --2(KRs) -2 + O. 7488 

Y o - ~  ~ i[(KRs) -~ -- K R J 4 ]  e -i~' (3.1) 

f f 1 - 1  ~_--½[1 - (KRs)2/8] e -2iOK, 

where 0.7488 is the value of the constant term in Y 0 o  
obtained by summing series similar to those in (2.28) if 
we set K = 0 and omit the G = 0 term. Unlike the pp 
structure constant which tends to a constant at F, the 
higher structure constants vanish as K --. 0 unless II -- 
l'1 is a multiple of six, in which case the sums over the 
non-zero L and G in (2.27) no longer vanish due to the 
symmetry,  but tend to a constant value. 

Similarly, we may use the 2mm sy_mmetry about the 
~5/point and the 3m symmetry at K to show that the 
structure constants vanish unless II - l'1 is a multiple 
of two or three respectively. Thus, -Y0-~ vanishes at 
both 37I and k as in Fig. 2(b), but Y~_ 1 only vanishes 
at R'. Technically, these properties are due to the fact 
that the point group of K is 6mm, 2mm and 3m at / ' ,  55/ 
and k respectively (Buxton, Loveluck & Steeds, 1978b; 
Cornwell, 1969). 

We may now deduce quite a lot about the coupling 
of the various partial waves in (2.11). For example, at 
k a 3 × 3 sp secular determinant (2.29) is diagonal 
giving pure s and p wave solutions at which 

D O = 1/,5~oo = - 13.296 (s wave) 
(3.2) 

and D 1 = - 1  (p  wave doublet). 

The p wave solution is a doublet as demanded by group 
theory - there is a two-dimensional irreducible 
representation of the point group of K at k (Buxton, 
Loveluck & Steeds, 1978b; Bradley & Cracknell, 
1972). Furthermore, since the structure constants Y u ,  
vanish at k unless I I - l ' l  is a multiple of three, the s 
state can only couple to f ( l / I  = 3) or higher partial 
waves with l = 3n as the size of the ASA determinant is 
increased. The p states on the other hand couple to d, g, 
etc., since I and l' can be negative as well as positive. In 
either case, the strength of the coupling is determined 
by the scattering properties of the potential via the log 
derivatives Dt(s ). Similarly, at If'/even partial waves (s, 
d, g, . . . )  are coupled as are the odd ones. Again these 
conclusions have been confirmed by a group-theoretical 
analysis using projection operator techniques as 
described by Bradley & Cracknell (1972). 

However, at F the situation is more complicated. 
From group theory, Buxton, Loveluck & Steeds 
(1978b) have deduced that Ill and I/'1 = 0 and 6, 1 and 
5, 2 and 4, etc. are coupled in accordance with the rule 
that I I - l ' l  should be a multiple of six which is just  the 

condition that the structure constants involving f or 
higher angular momenta do not vanish as K --, 0. The 
problem is that in the 3 x 3 determinant, 

1 I + D  1 
~'~- 10 

2 1 - D  l 

1 
Y 0 - ~  _ n + Y 0 0  

Do 

~ 1  - 1 f f lO 

Y - l l  

~ 0 1  

1 I + D ~  

2 1 - D  1 

= 0, (3.3) 

the s and p waves are apparently coupled. However, if 
we take the leading terms in (3.1) for the structure 
constants and retain 1/D o as a term also of order K -2, 
we find on expanding (3.3) that 

+ [D o - (KRs)2/2] = 0, (3.4) 

which has solutions 

D 0 = 0  and 1/D 1= 0 (twice) (3.5) 

as K --, 0; i.e. the s and p waves are not really coupled. 
Of course, we do not know a priori that 1/D o will 
diverge at one of the roots and should be regarded as 
O(K-2). However, if we expand (3.3) including terms of 
order K -2 and K ° using the approximations given in 
(3.1), we find the same solutions (3.5). Moreover, by 
continuing to regard 1/D 0 as O(K -2) as above, it can be 
shown by picking out the terms of order K -2 in larger 
determinants that partial waves I and l' are only 
coupled at F if I I - l '  I is divisible by six as demanded 
by group theory. It should also be noted that p and d 
wave solutions retain their twofold degeneracy (Bux- 
ton, Loveluck & Steeds, 1978b). 

3.2 The log derivatives Dr(s) 

As noted previously, the form of the muffin-tin 
potential only affects the form of the log derivatives 
Dr(s) which may be obtained by numerical integration 
of the radial Schr6dinger equation (2.10) outward from 
the origin. This presents no problems since thermal 
vibrations smear out the Coulomb singularity in the 
potential at the centre of the atomic string so that 
UMr(R) has a smooth parabolic minimum at R = 0 
(Ozorio de Almeida, 1975a; Buxton, Loveluck & 
Steeds, 1978b) and we may begin the integration with 

r t ( R ) = J t { R l s -  UMr(O)I uz} (3.6) 

for very small R (Jones, 1977). Since the projected 
potential 6r(R) is proportional to the relativistic mass of 
the fast electrons (Fujiwara, 1961, 1962), the inte- 
gration is repeated for each incident beam energy of 
interest. Fig. 3 shows the log derivatives for a Au [ 111 ] 
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zone axis at room temperature for 613 keV incident 
electrons. Just as in the more familiar one- or three- 
dimensional cases, the log derivatives are monotonic 
decreasing functions of the (transverse) energy, s, with 
simple poles whenever a zero of rt(R) crosses the 
Wigner-Seitz radius as s is increased (Messiah, 196 I). 

In the example shown in Fig. 3, there is a tightly 
bound ls state of the potential UMr(R) very near the 
sharp pole in D O at s --, --47 A -  - 2  since, according to 
Ozorio de Almeida (1975b), 

Dt(s ) = Ix lR s K; ( IXlRs) /Kt( IKIas) ,  
(3.7) 

--, I~:IR s as s --,--oo 

at a deeply-bound state. However, when an outer node 
of rt(R) moves in across Rs as s increases through posi- 
tive values, the pole in D t is much broader as in D O near 
s = 15 A -2 in Fig. 3. 

3.3 The f o r m  o f  the dispersion surface and  con- 
vergence o f  the A S A  

Once the structure constants and the log derivatives 
have been calculated as outlined in the preceding 
sections, we may calculate the transverse energy bands, 
sj(K), and hence the dispersion surface by finding the 
zeros of the ASA determinant (2.29). For the hex- 
agonal zone axis of interest here, a 7 x 7 determinant 
including only s, p, d and f partial waves proved 
sufficient for an accurate calculation of the important 
energy bands with sj(K) small or negative. The roots, 
si(K), of this highly non-linear secular determinant 
were found by the method described in the Appendix, 
which essentially involves the construction of a Sturm 
sequence followed by binary chopping to locate the 
roots. For Au [111] at 293 K and 613 keV the results 
are shown in Fig. 4 together with many-beam eigen- 
values computed from (2.7). As can be seen, near F a  3 

-6'0 

Fig. 3. s( 

Dt(s)~l \ 

. 4  \ \  

-40 -20 \ \ ' \  2~ 4'0 (AS_z) 

), p ( - - - )  and d( . . . . .  ) log derivatives for Au 
[111]. 

x 3 determinant including only s and p waves may be 
used. 

We can see this in detail by_considering the way the 
partial waves are coupled. At F an s wave can only be 
coupled to other waves with l = 6n, but states of such 
large angular momentum occur only at very high 
transverse energies so hybridization with the low-lying s 
states is negligible. Similarly, the low-lying p states are 
scarcely hybridized with the high g(lll = 4) states. At 
K however, it is essential to include thefwaves  because 
the high s state on the fourth band near s 4 = 10 A -2 is 
forced down by hybridization with the higher f states. 
The low-lying p states on bands (2) and (3) near s = - 2  
are again little affected_ by hybridization with higher d 
states. In contrast, at M where only even or odd partial 
waves can be coupled, the inclusion of thefwaves  does 
not affect the highest s state which is strongly hybri- 
dized with the d waves, moving down from around 9 to 
6 A-2 when a 5 x 5 matrix is used instead of a 3 x 3. 

Thus, in the region just above and below s = 0 which 
includes the states contributing most to the observed 
diffraction from thick Au [ 111] crystals at this voltage, 
there are three hybridized bands of predominantly sp 
character. At higher voltages, these bands become 
tightly bound with negative s as described by Buxton, 
Loveluck & Steeds (1978a,b). Indeed, at 1 MeV, the 2p 
bands are already quite narrow as shown in Fig. 5(a). 

To understand how the ASA which is a small 
transverse energy approximation enables us to calculate 
the position of these bound bands  and even the very 
deeply bound ls band, we have only to recall the form 
of the log derivatives D t near a deeply bound state as 
described in § 3.2. Thus, for example, although the 
ASA condition for the ls state varies around the 

(A-~)sJ 
12 

8 

- 4  "i 

--47 I 
--49 

]: 

L 
37,I K P 

Fig. 4. The first four transverse energy bands for Au [111] at 613 
keV from the ASA with a 3 x 3 ( . . . . . .  ), 5 x 5( . . . . .  ) and 7 x 
7 ( ) matrix. The ( - - - )  lines are the results of a many-beam 
calculation using a 91 x 91 matrix along T and 27 and an 80 x 80 
matrix along T'. 
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Brillouin zone according to 

1/D o = Yo0(K), (3.8) 

which implies 

0 at 1" 

D 0 =  - 1 3 . 2 9 6 a t k  ; (3.9) 

- 5 . 7 0 1  at 

near the ls bound state given by (3.7) D o varies so 
rapidly that all these values are attained at almost the 
same transverse energy. 

In Fig. 5(b), results are given for Au [111] at 100 
keV when bands (2), (3) and (4) lie considerably above 
s = 0. The ASA still gives accurate results although it 
must break down eventually for very high free bands 

(h-~)sJ 

-4  

-8  

(3) 

2 
M 

(a) 
K 

18J [ / / ' \ 
/ "  .. ' \  

I / "  I / /  I "<.\ --, 

6 ~ ,  / 

F ~/ k F 
(b) 

Fig. 5. Bands (2), (3) and (4) for Au [ 111] at 293 K for (a) 1 MeV, 
(b) 100 keV incident electrons from a 3 × 3 ( . . . . . .  ) and 7 x 7 
( ) ASA matrix compared with many-beam results com- 
puted as in Fig. 4. 

when s >> I U01. We note especially that bands (2), (3) 
and (4) which become accidentally degenerate at 613 
keV (Fig. 4) are accurately described in the ASA 
throughout the range 100 to 1000 keV. Thus, we 
conclude that the singlet F l and doublet F 5 states which 
become degenerate at the zone-axis critical voltage of 
613 keV, as above (Shannon & Steeds, 1977; Steeds, 
Jones, Loveluck & Cooke, 1977; Buxton & Tremewan, 
1978), are s and p states respectively, just as at very 
high voltage when they correspond to 2s and 2p  
atomic-string bound states (Buxton, Loveluck & 
Steeds, 1978a,b). 

Similarly, the ASA may be used to calculate the 
transverse energy bands near higher zone-axis critical 
voltages such as that involving bands (7) (8) and (9) in 
Mo [1111 (Steeds, Jones, Loveluck & Cooke, 1977). 
Fig. 6(a) shows results computed at 830 keV, the pre- 
dicted value of this critical voltage from a 91 x 91 
many-beam calculation. There is now quite a large dis- 

(h-2)sj 

4 

0 

-4  

£ 
F 

(h-2)sJ 

6.0. 

4.0 

2.0 

(ooo) 

-2.0 

-4-0 

~r, K 
(a) 

/ 
i / . . . . . - (9 )  

/ /  , / "  /,.X...-----'X 
/ /  , /  

~"~ \ \ (½ ½ o) 

(b) 
Fig. 6. Mo [111], (a) bands (5)-(9) ( ) from a 7 x 7 ASA 

matrix and ( - - - )  from a many-beam matrix computed again as 
in Fig. 4. (b) Comparison of ASA ( ) and 91 x 91 ( - - - )  
and 127 x 127 ( . . . . . .  ) many-beam calculations. The 
convergence of the ASA is confirmed by the APW results × 
calculated as in Jones (1976). 
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crepancy between the ASA and many-beam results, but 
as Fig. 6(b) shows, this is due to lack of convergence of 
the many-beam calculation for this very deep, strong 
potential. 

4. Bloch waves in the A SA  

As noted at the end of § 2.2, the partial wave 
amplitudes, al j), may be obtained from the eigen- 
vectors, {c! j)}, of the ASA equations, (2.25). The latter 
are best obtained by inverse iteration (Wilkinson, 1965) 
using the (approximately) singular ASA matrix 
evaluated at the transverse energy sj(K). For this, any 
essential degeneracies of the sj(K) must be split by 
evaluating the matrix at a neighbouring K point of 
lower symmetry.  Once we have found the el j), the 
partial wave amplitudes, alJ), given by 

alJ)= R~cl j) /[rt(Rs)(lll - Dt)l (4.1) 

must be normalized. It is usual to choose 

1/S o f d 2 Rlrj(R)I2 = 1, (4.2) 
S o  

so that for the Fourier coefficients, 

C~ ~ = Y a~ JJ exp(ilOK+~) i -1 27~/s o 
I 

Rs 

x f R dRJt ( IK + GIR) rt(R) (4.7) 
0 

when S o is again replaced by a Wigner-Seitz circle and 
the angular integration carried out. 

In Fig. 7, for Bloch waves (2) and (4) of Au [ 111 ] at 
613 keV, we plot the contribution from each partial 
wave to the sum in (4.4). As expected, these Bloch 
waves are sp hybrids near F, the hybridization 
persisting almost up to K = 0 because of the accidental 
degeneracy of bands (2), (3) and (4) at this voltage. 
Only for very small values of I KI does Bloch wave (2) 
become a pure s state and wave (4) a pure p state, 
indicating that the critical voltage when the states 
remain degenerate at K = 0 is just above 613 keV. 
Bloch wave (3) however, remains a pure p state near ~b 
and is unaffected by the very rapid changes in waves 
(2) and (4). In a second paper, we shall show how the 
behaviour of Bloch waves (2) and (4) is responsible for 
the central bright spot observed in bright-field micro- 
graphs at the critical voltage (Shannon & Steeds, 
1977). 

w! 
~ IC~)12 = 1. (4.3) 0.6 
G 

In the full K K R  method this is quite difficult because 
(4.2) involves integration over the muffin-tin cylinder 0.4 
and the interstitial area (Ozorio de Almeida, 1975a). 
However, in the ASA where it has been assumed that 
the partial wave expansion (2.11) is valid out to the 0.2 
Wigner-Seitz radius R s, we may replace the integral 
over the complicated geometry of the unit cell S O by an 
integral over the Wigner-Seitz circle. Thus, perform- 0 
ing the angular integration, we demand 

Rs 

 [alj'lee./Sof'-- R d R ~ ( R ) =  1, (4.4) w, 
1 0 

in which the radial integration may be evaluated by 0.8 
means of the Wronskian theorem (Messiah, 1961); 

f S R d R r ~ = R s  [ 0rt~ ~rt, ] (4.5) 0.6 

0 

ODt 0.4 
= -  ~ ( R , ) - -  

c~s 

Similarly, once we have normalized the amplitudes 0.2 
at J), it is easy to calculate the Fourier coefficients of the 
Bloch waves since 

C ~ ) =  1/S o J d 2 R exp[-- i (K + G) .RI  r/(R), (4.6) 
S o  

which reduces to 

s ~  \ 
/ 

_ _ _ ~ - ~  
i 

M 

| 

/¢ r 
(a) 

, p  d / -  
\ / 

\ • 

Y - ,  

\ 

\ 

/ 1 
/ 

t 

| 

F M K F (b) 
Fig. 7. Weights of the s, p, d partial waves as described in the text, 

(a) for Bloch wave (2) and (b) for Bloch wave (4). 
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However, before the ASA can be used to calculate 
diffracted wave intensities we must assess the accuracy 
of the ASA Bloch waves. In Fig. 8, therefore, we 
compare values of ICt0J)l for Bloch waves (1), (2) and 
(4) as computed from (4.7) with a many-beam 
calculation and in Fig. 9 make a similar comparison for 
I c(J t  and ¢7(Jt For Bloch waves (2) and (4), the v202 v022 • 
curves do not continue up to the centre of the Brillouin 
zone because of the rapid change in the sp hybridi- 
zation of these waves near the accidental degeneracy. It 
can be seen that the agreement is considerably better in 
Fig. 8. This is because the Cto j~ are, according to (4.7), a 
cylindrical average of the Bloch waves and therefore 
less sensitive to the replacement of the unit cell of the 
projected potential by its Wigner-Seitz circle than the 
Ctd ). For large values of lGI when the Fourier integral 
(4.6) is sensitive to the form of the wave function in the 
interstitial region, there can be large errors in the values 
of the Fourier coefficients C~ h calculated from (4.7). 
However, to explain the observed zone-axis critical- 
voltage effects (Shannnon & Steeds, 1977), we only 
need the Cto j~ which may be obtained from (4.7). 
Furthermore, since only a 3 x 3 ASA matrix need be 
used near the centre of the Brillouin zone for small K, in 
a subsequent paper we shall show how the bright-field 
intensity I0(K) can be calculated analytically near the 
critical voltage. 

ICV'I 

From the KKR method proposed by Ozorio de 
Almeida (1975a), we have derived an approximate way 
of calculating the Bloch waves, rj, and their transverse 

(JL IC2021 

0-4 

0-6 ~ " ~ , . ~ ' - - -  
(4 )  ... 

0.5 

0 . 4  ' ' " 
F M 

Fig. 8. Comparison of ICU)I for Au [111] along ~ at 613 keV for 
Bloch waves (1), (2) and (4), ( - - - )  ASA, ( ) many-beam. 

energies, sj(K) (and hence the dispersion surface), in 
cross-grating HEED, w i t h o u t  having to manipulate 
large matrices. Numerical tests of this atomic-string 
approximation (or ASA) for a Au [1 11] zone axis at 
100, 613 and 1000 keV have shown that it yields 
extremely accurate values for the transverse energy 
bands when compared with large many-beam cal- 
culations. Similar results (not presented here) for Ge 
[ 1 11 ] and Cr [ 11 1 ] zone axes confirm that this level of 
agreement can be expected in general as long as the 
many-beam calculation has converged. Indeed, for Mo 
[ 11 1] at 293 K and 830 keV, which has a very strong 
projected potential, comparison with an exact APW 
calculation showed that the ASA which only used a 
small 7 x 7 matrix was better than a 127 × 127 
many-beam calculation. 

It has also been shown by comparison with the 
eingenvectors C~ ) of many-beam computations for Au 
[111] that the Bloch waves themselves may be 
calculated fairly accurately in the ASA even though the 
unit cell of the projected potential is replaced by its 

0-2 

(l) ..~ \ \ \  

0 
F 

5. Summary and conclusions 

J l b , 

(a) 

Iq.~'~l 

o.41 

() __ 

0.2 \ " ~  

j \ 
F M 

(b) 
Fig. 9. Comparison of (a) I C u) I and (b) I C (j) I as in Fig. 8. 20~ 02~ 
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Wigner-Seitz circle. In particular, this approximation 
caused little error (<0.5%) in the Ct0 J) so the ASA can 
be used, for example, to calculate bright-field inten- 
sities. 

The computations also showed that when the Sturm 
sequence described in the Appendix was used to locate 
the roots of the ASA determinant and the log 
derivatives were interpolated, an ASA calculation of 
the transverse energy bands was approximately ten 
times faster than the conventional many-beam method. 
However, when the Fourier coefficients, C~/), were also 
calculated, the large number of integrations which had 
to be carried out in the ASA meant that the 
computation times were then roughly equal. 

In § 3 we described in detail the behaviour of the 
structure constants, 6'~tt,(K), and the log derivatives. It 
was shown that Bloch waves (2), (3) and (4) which 
become accidentally degenerate at the zone-axis critical 
voltage were almost entirely sp hybrids. Moreover, for 
I KI < ¼(220) near the centre of the Brillouin zone, the 
Bloch waves on these bands remain predominantly sp 
hybrids so a 3 × 3 ASA matrix may be used, greatly 
facilitating the derivation of the analytic results to be 
presented in a second paper. 
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the computing. The financial support of the SRC is also 
gratefully acknowledged for a research studentship 
(PTT) and a research grant at the beginning of this 
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A P P E N D I X  

Roots  o f  the A S A  determinant 

One way to find the transverse energy bands, sj(K), 
would be to evaluate the ASA determinant, (2.29), at 
different trial values of s and look for its zeros by 
detecting a change of sign (say). Such a method, 
however, is very inefficient and unreliable even if 
Gaussian elimination (Wilkinson, 1965) is used to 
convert the ASA matrix to upper triangular form in 
order to evaluate the determinant, as very small steps in 
s must be used to avoid missing two roots. Even then it 
fails near a doubly-degenerate pair of roots. Moreover, 
there are poles in the determinant which can also 
change its sign. As can be seen from the ASA 
equations there are second-order poles whenever 

D t =  Ill f o r l 4 : 0  (A.1) 

and first-order poles when D o vanishes. Only the latter 
cause the sign of the determinant to change. 

Fortunately, by writing the ASA equations in matrix 
form, 

M(s;, K) e(sj, K) = 0, (A.2) 

and considering the related l inear eigenvalue problem 
(henceforth K is suppressed), 

M(s) c ") ( s )=  2t(s)c ") (s), (A.3) 

at an arbitrary transverse energy, s, a simple method 
for finding all the eigenvalues s; in some range (sL,sv) 
may be devised. The derivation follows that used by 
van der Avoird, Liebmann & Fassaert (1974) in their 
band-structure calculations. Differentiating (A.3) and 
assuming that the eigenvectors c ti) are normalized so 
that c Ci)÷ c ") = 1, we find, since M is Hermitian, that 

1 @D t 
c3)t i _ c li)+ c0M c tt) = ~ (I II - Dr) 2 c3s IOIt) 12 (A.4) 
c~S c3s t 

from (2.25) and (2.26). But, from the Wronskian 
theorem (4.5), we know that cODt/c~s is always negative 
[the rt(R) are real when absorption is neglected and 
UMr(R) is real], so (A.4) implies 

c02 i 
< 0 (A.5) 

c% 
for every linear eigenvalue for all s. 

Immediately, we note this means that at least one 2~ 
has a s imple  zero at each transverse energy band, s;. If 
sj is non-degenerate exact ly  one 2/ is zero; if sj is a 
doublet, two ,;t~ are zero, etc. Similarly, as shown by van 
der Avoird, Liebmann & Fassaert (1974), when there is 
a s imple  pole in det I M I, one of the 2 i has a simple pole, 
and two 2~ have simple poles at the second-order poles 
of det I MI. Thus, assuming a second-order pole in 
det IMI due to one of the D t = I11 for l 4 :0  as in (A.1), 
we may sketch the behaviour of the ,;t~ as in Fig. 10. 

Besides showing how many transverse energy bands, 
s~(K), can be obtained from a small ASA matrix (there 
is an infinite sequence of poles in each log derivative 
and therefore an infinite sequence of poles in the ,;t~), 
Fig. 10 may be generalized to yield a simple rule for 
counting the number of transverse energy bands 
n(s~,sv)  in the range s L to s v. Since n(sL,sv) is equal to 
the number of zero 2 i in (s L,sv), 

;ti(s) 
I 

I 

Fig. I0. The eigenvalues 2(s). 
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n(sL,sv) = n+ (sL) - n+ (sv) + ~ dm, (A.6) 
s(m) 

where n+(s) is the number of positive 2i(s) and the 
~stm~, which counts the number of poles in the 2i, is 
over all zeros, s(m), of D m -- Iml in (sL,sv), with 
multiplicities, d m, equal to one if m is zero and two 
otherwise. This is the same as the rule obtained by van 
de Avoird, Liebmann & Fassaert (1974) so we may 
take over the remainder of their scheme in which it is 
proved that 

n+ (s) = number of positive diagonal elements in the 
upper triangular form of M, (A.7) 

by using a Sturm sequence. Thus, since the upper 
triangular form of M may be quickly obtained by 
Gaussian elimination without pivoting (van der Avoird, 
Liebmann & Fassaert, 1974), once the s(m) have been 
located in a preliminary calculation, all we have to do 
to find all the sj in (sL,s v) is to construct n(sL,st:) and 
then divide the range successively in half until each root 
is obtained with the desired accuracy. 

In practice, to facilitate rapid evaluation of the log 
derivatives D t at the required s, the wavefunctions, 
rt(Rs,S), and their derivatives, r~(R,s), were approxi- 
mated by polynomials (in s) fitted to a grid of points 
computed at the beginning of the calculation. These 
polynomials were then differentiated directly when we 
wished to evaluate the normalization integrals (4.4). 
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